ASSA-PBN: An Approximate Steady-State Analyser of Probabilistic Boolean Networks
نویسندگان
چکیده
We present ASSA-PBN, a tool for approximate steady-state analysis of large probabilistic Boolean networks (PBNs). ASSA-PBN contains a constructor, a simulator, and an analyser which can approximately compute the steadystate probabilities of PBNs. For large PBNs, such approximate analysis is the only viable way to study their long-run behaviours. Experiments show that ASSAPBN can handle large PBNs with a few thousands of nodes.
منابع مشابه
ASSA-PBN 2.0: A Software Tool for Probabilistic Boolean Networks
We present a major new release of ASSA-PBN, a software tool for modelling, simulation, and analysis of probabilistic Boolean networks (PBNs). PBNs are a widely used computational framework for modelling biological systems. The steady-state dynamics of a PBN is of special interest and obtaining it poses a significant challenge due to the state space explosion problem which often arises in the ca...
متن کاملGenerating probabilistic Boolean networks from a prescribed transition probability matrix.
Probabilistic Boolean networks (PBNs) have received much attention in modeling genetic regulatory networks. A PBN can be regarded as a Markov chain process and is characterised by a transition probability matrix. In this study, the authors propose efficient algorithms for constructing a PBN when its transition probability matrix is given. The complexities of the algorithms are also analysed. Th...
متن کاملAn approximation method for solving the steady-state probability distribution of probabilistic Boolean networks
MOTIVATION Probabilistic Boolean networks (PBNs) have been proposed to model genetic regulatory interactions. The steady-state probability distribution of a PBN gives important information about the captured genetic network. The computation of the steady-state probability distribution usually includes construction of the transition probability matrix and computation of the steady-state probabil...
متن کاملSimulation study in Probabilistic Boolean Network models for genetic regulatory networks
Probabilistic Boolean Network (PBN) is widely used to model genetic regulatory networks. Evolution of the PBN is according to the transition probability matrix. Steady-state (long-run behaviour) analysis is a key aspect in studying the dynamics of genetic regulatory networks. In this paper, an efficient method to construct the sparse transition probability matrix is proposed, and the power meth...
متن کاملGPU-Accelerated Steady-State Computation of Large Probabilistic Boolean Networks
Computation of steady-state probabilities is an important aspect of analysing biological systems modelled as probabilistic Boolean networks (PBNs). For small PBNs, efficient numerical methods can be successfully applied to perform the computation with the use of Markov chain state transition matrix underlying the studied networks. However, for large PBNs, numerical methods suffer from the state...
متن کامل